M18/4/CHEMI/SP3/ENG/TZ2/XX/M

Markscheme

May 2018

Chemistry

Standard level

Paper 3

31 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Questi	on	Answers	Notes	Total
1.	а	i	consists of single/one sheet/layer «of carbon atoms» \checkmark	Do not accept "sp ² " alone without reference to single/one sheet/layer.	
			graphene has no density measurement <i>OR</i> graphene has no distance between layers data <i>OR</i> graphene has large specific surface area «compared to graphite» √	Accept "thickness of one atom" OR "consists of a plane" for M1.	2
1.	а	ii	Any one of these alternatives:		
	u		ALTERNATIVE 1 $\left(\frac{1.3 \times 10^{11}}{76 \times 10^{6}}\right)^{1.7} \times 10^{3}/1711 \checkmark$	Accept any value in the range 1700–27 083. Answer may be expressed in scientific notation or otherwise.	
			ALTERNATIVE 2		1
			$1600 \times 76 \times 10^6 = 1.2 \times 10^{11}$ «is less than tensile strength of graphene» \checkmark	Accept any value calculated which is less than the graphene tensile strength based on a value chosen from within	
			ALTERNATIVE 3	the 4.8–76 \times 10 ⁶ range.	
			$\frac{1.3 \times 10^{11}}{1600}$ = 8.1 × 10 ⁷ «is greater than upper end of tensile strength for graphite» ✓		

(Question 1a continued)

C	Question		Answers	Notes	Total
1.	а	111	«graphene has a high electron mobility of» 15000–200000 «cm² V ⁻¹ s ⁻¹ » ✓	A specific value or range of values must be given. Accept any value in the 15000–200000 «cm² V ⁻¹ s ⁻¹ » range.	1
1.	b		smaller/zero ✓ no delocalized electrons/electrons are bound/electrons not free to move/electrons not free to roam <i>OR</i> localized electrons «in sigma bonds» <i>OR</i> large band gap ✓	Accept "diamond is a dielectric" OR "diamond does not conduct electricity" for M2. Award [1 max] for just "immobile/less mobile". Award [2] for "electrons immobile «in diamond» due to the large band gap" OR "electrons «in diamond» immobile since electrons are localized «in the sigma bonds»".	2

C	Questior	Answers	Notes	Total
1.	С	shorter bonds in graphene		
		OR		
		bonds in graphene intermediate between single and double		
		OR		
		bond order in graphene is 1.33		
		OR		
		delocalization creates stronger bonds		2
		OR		_
		shorter bonds are stronger \checkmark		
		stronger/shorter bonds require higher temperature/faster thermal motion to be altered		
		OR		
		stronger/shorter bonds require greater energy to be broken \checkmark		

Questio	Answers	Notes	Total
2. a	Any two of: Ethene: «carbon–carbon» double bond AND Ethane: «carbon–carbon» single bond ✓	Do not accept "different number of atoms/hydrogens/bonds" etc.	
	ethene has a shorter carbon–carbon bond «than ethane» √ <i>Ethene</i> : planar/two-dimensional/2-D <i>AND Ethane</i> : tetrahedral «carbons»/ three-dimensional/3-D <i>OR</i> <i>Ethene</i> : each carbon surrounded by three electron domains <i>AND Ethane</i> : each carbon surrounded by four electron domains <i>OR</i> different molecular geometries/shapes √	Accept "Ethene: unsaturated AND Ethane: saturated" OR "Ethene: has a double bond AND Ethane: does not" OR "Ethene: two flexible bonds between carbon atoms AND Ethane: one". Accept any reasonable physical description of the two different molecular models based on a variety of kits for M1.	2 max
	rotation about carbon–carbon inhibited/blocked in ethene AND not in ethane \checkmark	For ethene, accept any bond angle in	
	«H–C–C/H–C–H» bond angles different <i>OR</i> <i>Ethene:</i> «bond angles approximately» 120° <i>AND Ethane:</i> 109.5/109°√	the range 117–122°. Award [2] if any two of the concepts listed are shown in a correctly labelled or annotated diagram. Award [1 max] for two correct statements for either molecule but with no comparison given to the other. Award [1 max] for suitable unlabeled diagrams of both compounds.	

Q	Question		Answers	Notes	Total
2.	b	i	6 carbon atoms labelled in correct positions \checkmark both nitrogen atoms labelled in correct positions \checkmark bromine <i>AND</i> chlorine atoms labelled in correct positions \checkmark		3

Question		ion	Answers	Notes	Total
2.	b	ii	accurate bond angles/lengths can be measured <i>OR</i>	Accept "precise" for "accurate".	
			«using mathematical functions» can calculate expected shapes based on energy minimizations	Accept "computer generated structural	
			OR	representation is normally what is	
			better visualization of possible bond rotations/conformation/modes of vibration <i>OR</i>	expected in order to be published «in a scientific journal»".	
			can visualize macromolecules/proteins/DNA		
			OR		
			hydrogen bonding «networks» can be generated/allows intermolecular forces «of attraction» to be simulated		
			OR		
			more variety of visualization representations/can observe space filling		1
			OR	Accept "easier to see different sizes of	1
			can produce an electron density map/electrostatic potential map	atoms/atomic radii".	
			OR		
			once model is generated file can be saved for future use/computer models can be shared globally by scientists		
			OR		
			helps design molecules of biological significance/assists in drug design «using libraries»		
			OR		
			can predict molecular interactions with solvents/can predict physical properties/can predict spectral data/can examine crystal structures		
			OR		
			«often» easier to construct/modify «model» ✓		

(Question 2b continued)

Q	Question		Answers	Notes	Total
2.	b	111	bonds within ring have resonance <i>OR</i>	There must be reference to a ring or cyclic structure.	
			contains delocalized «conjugated pi» electrons in ring \checkmark	Accept "alternating single and double bonds in a ring".	
				Accept "ring which shows resonance/delocalization".	1
				Accept "follows Hückel/4n +2 rule".	
				Do not accept "contains one or more benzene rings".	

Section B

Option A — Materials

(Question	Answers	Notes	Total
3.	а	A <i>lloy:</i> nixture of <u>metal</u> with other metals/non-metals DR	Award [1 max] for implying "composites only have heterogeneous/nonhomogeneous compositions".	2
		 mixture of elements that retains the properties of a metal ✓ <i>Composite:</i> reinforcing phase embedded in matrix phase ✓ 		-
3.	b	effective for yttrium «but less/not for nickel» ✓	Accept "ICP-OES is more accurate for lower yttrium concentrations than higher concentrations" for M1.	
		points on nickel graph do not lie on $y = x$ line OR	Accept [Ni] and [Y] for concentrations of nickel and yttrium.	2
		cannot be used for low concentrations of nickel OR	Accept "detection limit for yttrium is lower than for nickel" for M2.	L
		concentration of nickel is lower than recorded value ✓	Award [1 max] for "more accurate for yttrium at lower concentrations AND nickel at higher concentrations".	

C	Question		Answers	Notes	Total
3.	с	i	<i>Graph 1:</i> determines wavelength of maximum absorption/maximum intensity «for vanadium» ✓	Do not accept just "determines maximum wavelength/ λ_{max} " for M1.	
			<i>Graph 2:</i> determines absorption of known concentrations «at that wavelength» <i>OR</i> estimates [V]/concentration in a sample using «the signal» intensity √	Do not accept "calibration curve" for M2.	2
3.	C	ii	x = 37.74 wµg kg ⁻¹ » ✓	Answer must be given to four significant figures . Do not accept values obtained directly from the graph.	1
3.	C	iii	vanadium reduced in first reaction <i>AND</i> oxidized in second reaction <i>OR</i> V ₂ O ₅ oxidizes SO ₂ in first reaction <i>AND</i> VO ₂ reduces O ₂ in second reaction <i>OR</i>	Do not accept "reactants adsorb onto surface AND products desorb".	
			vanadium returns to original oxidation state «after reaction» ✓ provides an alternative reaction pathway/mechanism «with a lower activation energy» ✓	Accept "oxidation number" for "oxidation state".	2

C	Question		Answers	Notes	Total
4.	a		Atactic $\begin{array}{ c c c c c } \hline CH_3 & CH_3 & CH_3 & CH_3 \\ -CH_2 - CH - CH_2 - CH - CH_2 - CH - CH_2 - CH - \\ CH_3 & \checkmark \end{array}$ Isotactic $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Do not accept syndiotactic (alternating orientation of the CH ₃ groups), eg, CH ₃ CH ₃ -CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH- CH ₃ CH ₃ for M1 or M2. Accept any correct atactic ordering of CH ₃ groups. Penalize missing hydrogens or incorrect bond connectivities once only. Accept skeletal structures. Ignore continuation bonds, brackets and "n" indices in structures.	2
4.	b	i	strong covalent bonds ✓	Accept "moisture cannot get inside the plastic matrix, and bacteria cannot live without moisture, so they cannot attack the polymer chains". Accept "bacteria lack the enzymes required to break down the hydrocarbon chains".	1

(Question 4b continued)

C	Question		Answers	Notes	Total
4.	b	ii	 Any two of: Recycling: shredded/melted/reformed AND Reuse: used in its current form ✓ recycling is more energy intensive «than reusing» ✓ recycling degrades the quality of plastic but reusing «typically» does not ✓ recycling breaks down original product to form a new product whereas reuse extends product life ✓ 		2
4.	С	i	more pliable/flexible materials OR more durable/non-corrosive/longer-lasting materials OR greater variety of materials OR lower density OR can be clear/translucent √	Accept "more adaptable". Do not accept just "more useful".	1

C	Question	Answers	Notes	Total
5.	a	Arc discharge: graphite electrode OR hydrocarbon solvent ✓	Accept "carbon electrode". Accept specific examples of suitable hydrocarbon solvents (eg, methyl benzene/toluene OR cyclohexane).	2
		CVD: gaseous hydrocarbons ✓	Accept specific examples of suitable gaseous hydrocarbons (eg, methane, ethane, ethyne/acetylene) OR carbon monoxide OR carbon dioxide.	
5.	b	 Any three from: chemically stable AND does not «chemically» degrade over time √ stable over range of temperatures AND to avoid «voltage/random shift» fluctuations √ polar AND influenced by an electric field √ strong intermolecular forces AND allow molecule to align in specific orientations √ rapid switching speed/low viscosity AND change orientation «quickly» when electric field is applied/reversed √ 	Award [1 max] for identifying three correct properties without any discussion or incorrect interpretation of suitability. Accept "voltage" for "electric field".	3 max

Option B — Biochemistry

C	uestion	Answers	Notes	Total
6.	a	<i>Type of reaction:</i> condensation <i>OR</i> esterification/triesterification <i>OR</i> nucleophilic substitution/nucleophilic displacement/S _N 2 √	Do not accept just	2
		<i>By-product:</i> water/H₂O ✓	"substitution/displacement".	
6.	b	ALTERNATIVE 1	Award [2] for correct final answer.	2
		$ \frac{1017}{253.8} ≈ 4 \checkmark $		

C	Question	Answers	Notes	Total
6.	C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accept a skeletal structure. Penalize missing hydrogens or incorrect bond connectivities once only in Option B. Accept condensed formula for ester.	2
6.	d	 has affected consumption of <i>trans</i>-fats/<i>cis</i>-fats/saturated fats/unsaturated fats/ hydrogenated/artificially altered fats <i>OR</i> reduce/eliminate <i>trans</i>-fats/increase in <i>cis</i>-fats <i>OR</i> reduce/eliminate saturated fats <i>OR</i> increase unsaturated fats √ 	Do not accept "decrease in fat" alone. Accept "lipid" for "fats".	1
6.	e	$ \frac{29.9 \text{ g}}{150.15 \text{ g mol}^{-1}} = 0.199 \text{ «mol» } \checkmark $ «0.199 mol × 205.9 kJ mol ⁻¹ =» 41.0 «kJ» ✓	Ignore significant figures in M1. Award [2] for correct final answer. Award [1 max] for incorrect significant figures in final answer.	2

0	Questio	n Answers	Notes	Total
6.	f	ratio of oxygen to carbon in lipids lower <i>OR</i>	Accept "«average» oxidation number of carbon in linoleic acid is lower" for M1.	
		lipids less oxidized		
		OR		2
		lipids more reduced \checkmark		
		more energy per mass/g released when lipids are oxidized \checkmark		

C	Questi	on	Answers	Notes	Total
7.	a		$H_{2}N - CH - C - H - CH - C - OH$ $H_{2}N - CH - C - OH$ $H_{3} - H - CH - C - OH$ $H_{4} - CH - C - OH$ $H_{5} - CH - C - OH$ H	Accept zwitterion form of dipeptide. Accept a condensed structural formula or a skeletal structure. Penalize missing hydrogens or incorrect bond connectivities once only in Option B.	2
7.	b		3 ✓		1
7.	C		form zwitterions ✓ «strong» ionic bonding <i>OR</i> «strong» ionic lattice <i>OR</i> «strong» electrostatic attraction/forces ✓	Do not accept hydrogen bonding or IMFs for M2.	2

Question	Answers	Notes	Total
Question 8.	Answers Any two of: replaces plastics with biodegradable/starch/cellulose based plastics ✓ use enzymes instead of polluting detergents/phosphates OR use of enzymes means lower temperatures can be used OR OR	Accept formulas for names. Award mark for any other reasonable specific green chemistry example that prevents the release of pollutants/toxic chemicals into the environment by changing the method or the materials used. Do not award mark for methods that	Total
	use enzymes instead of emulsifiers to treat oil spills <i>OR</i> use enzymes to produce esters at lower temperatures/without sulfuric acid ✓ replace organic/toxic solvents with carbon dioxide ✓	involve clean-up of pollutants from the environment such as host-guest chemistry or alternative energy sources.	2
	replace polymers from fossil fuel with bamboo/renewable resources \checkmark		
	develop paint resins reducing production of volatile compounds «when paint is applied» \checkmark		
	industrial synthesis of ethanoic/acetic acid from methanol and carbon monoxide has 100% atom economy \checkmark		
	energy recovery 🗸		

Question	Answers	Notes	Total
9.	Vitamin A: fat soluble/soluble in non-polar solvents AND non-polar/long hydrocarbon backbone/chain √	Accept "Vitamin A: fat soluble/soluble in non-polar solvents as it contains only one hydroxyl group whose H-bonds with water are not strong enough to overcome London/dispersion/vdW forces between Vitamin A molecules".	
	Vitamin C: water soluble AND contains 4 hydroxyl groups/contains many hydroxyl groups/forms «many» H-bonds with water √	Accept "lipid" for "fats". Accept "alcohol" OR "hydroxy" OR "OH groups" for "hydroxyl" but not "hydroxide".	2
		Award [1 max] for "Vitamin A: fat soluble AND Vitamin C: water soluble" with no or incomplete explanation.	

Option C - Lifetgy	tion C — E	nergy
--------------------	------------	-------

Q	uestion	Answers	Notes	Total
10.	а	Any two of:		
		high energy content/high energy density/high specific energy	Accept "high potential energy" for M1.	
		OR		
		high enthalpy of combustion/very exothermic enthalpy of combustion \checkmark		
		shortage of alternatives		
		OR		
		alternatives are expensive		
		OR		
		oil is relatively cheap		
		OR		
		oil is «still» abundant/common ✓		
		well-established technology		2
		OR		
		easy for consumers to obtain		
		OR		
		commonly used 🗸		
		easy to store		
		OR		
		easy to transport		
		OR		
		easy to extract ✓		
		produces energy at a reasonable rate \checkmark		

Q	uesti	on	Answers	Notes	Total
10.	b	i	$C_{16}H_{34}(g) \rightarrow C_8H_{16}(g) + C_8H_{18}(g)$		
			OR		1
			$C_{16}H_{34}(g) + H_2(g) \rightarrow 2 C_8H_{18}(g) \checkmark$		
10.	b	ii	C ₈ H ₁₈ AND is an alkane		
			OR		1
			C_8H_{18} AND petrol does not contain alkenes \checkmark		•
10.	с	i	fuels can be compressed more without undergoing «unwanted» auto-ignition \checkmark	Accept "burns smoother without undergoing «unwanted» auto-ignition" OR "fuel does not auto-ignite".	1
10.	с	ii	produces more branched chain hydrocarbons «with higher octane rating»	Accept "increase branches".	
			OR		
			produces aromatics «which have higher octane rating»	Do not accept "produces benzene".	4
			OR produces cyclohexanes «which have higher octane rating» √	Do not penalize for "benzene" if penalty applied in 2.b.iii.	1
			produces cyclonexanes awhier have higher obtaile rating, v	Accept "produces cyclic structures".	

C	Questio	Answers	Notes	Total
G 11.	a	Any three of: IR/long wavelength/low frequency radiation radiated/emitted by the Earth's «surface absorbed in the bonds» ✓ bond length/C=O changes OR «asymmetric» stretching of bonds OR bond angle/OCO changes ✓ polarity/dipole «moment» changes OR dipole «moment» created «when molecule absorbs IR» ✓	Notes Do not accept terms such as "reflect" OR "bounced" OR "trapped".	Total 3
		«some of» energy is then re-radiated towards «the surface of the» Earth \checkmark		

C	Questio	Answers	Notes	Total
11.	b	Any two of:	Accept names or formulas.	
		H ₂ O AND «relatively» greater abundance/stable concentration/less effective at absorbing radiation/lower GWP so not much overall effect on global warming/climate change √	Accept two different gases with the same effect for [2] .	
		CH ₄ /N ₂ O/CFCs/SF ₆ /O ₃ /HCFCs AND more effective «than CO ₂ » at absorbing radiation/higher GWP so could contribute to global warming/climate change \checkmark	Award [1 max] for identifying the names/formulas of two greenhouse gases.	2
			Accept "greenhouse factor" for "GWP" but not just "greenhouse effect".	
		PFCs/SF ₆ /NF ₃ /Some CFCs AND have very long life in atmosphere so could contribute «in the future» to global warming/climate change ✓	For M3, do not allow "CFC" alone as only some have long lifetimes (eg, CFC- 115, CFC-113).	

12.	а	$\ll \frac{813\mathrm{K} - 296\mathrm{K}}{813\mathrm{K}} \times 100 \mathrm{w} = 64 \mathrm{w} \mathrm{w} \mathrm{w} \mathrm{v}$		1
12.	b	35% of <u>chemical/potential</u> energy available in coal is transformed to electricity/electrical energy ✓ not all <u>chemical</u> energy from burning fuel transferred into heating water <i>OR</i> energy dispersed elsewhere/energy lost due to friction of moving parts <i>OR</i> heat loss to the surroundings ✓	Accept "stored energy" for "potential energy".	2

Question	Answers	Notes	Total
13. a	AnswersAward [1] for one similarity: both increase binding energy/energy yield «per nucleon» OR mass loss/defect in both «nuclear» reactions/mass converted to energy «from $E = mc^2$ » OR both produce ionizing radiation \checkmark $Award$ [2 max] for any two differences: in fusion, light nuclei combine to form heavier ones AND in fission, heavier nuclei split into lighter ones \checkmark	Accept "small nuclei" OR "smaller atomic masses of nuclei" for "light nuclei" AND "large nuclei" OR "greater atomic masses of nuclei" for "heavier nuclei".	Iotai
	fission produces radioactive/nuclear waste <i>AND</i> fusion does not ✓ fission is caused by bombarding with a neutron «or by spontaneous fission» <i>AND</i> fusion does not <i>OR</i> fission can initiate a chain reaction <i>AND</i> fusion does not ✓	Do not accept "no/less waste produced for fusion".	3
	 fusion releases more energy <u>per unit mass</u> of fuel than fission √ fuel is easier to obtain/cheaper for fusion reactions √ fission reactions can be controlled in a power plant <i>AND</i> fusion cannot «yet» √ fusion reactor less likely to cause a large-scale technological disaster compared to fission √ fusion less dangerous than fission as radioactive isotopes produced have short half-lives so only cause a threat for a relatively short period of time √ fusion is in experimental development <i>AND</i> fission used commercially √ 	Accept "higher specific energy for fusion".	

Q	Question		Answers	Notes	Total
13.	b		$\frac{1}{64}/\frac{1}{2^6}/0.016$	Accept "1.6 %".	1

14. a	a	C ₇ H ₁₅ COOC ₅ H ₁₁ (I) + CH ₃ OH (I) → C ₇ H ₁₅ COOCH ₃ (I) + C ₅ H ₁₁ OH (I) OR C ₁₃ H ₂₆ O ₂ (I) + CH ₄ O (I) → C ₉ H ₁₈ O ₂ (I) + C ₅ H ₁₂ O (I) OR	Accept correct equation in any format eg, skeletal, condensed structural formula, etc.	
		$\begin{array}{c} O \\ H_{3}(CH_{2})_{6} \end{array} \xrightarrow{O} O(CH_{2})_{4}CH_{3} \end{array} \xrightarrow{+} H \xrightarrow{H} H \xrightarrow{H} O H \xrightarrow{\to} H \xrightarrow{H} $	Accept equations with equilibrium arrow.	1
		$H_{3}C$		
14. b	D	less viscous «and so does not need to be heated to flow» OR less likely to undergo incomplete combustion OR	Ignore equation and products in 14a.	1
		fewer intermolecular/London/dispersion forces <i>OR</i>	Accept "van der Waals'/vdW" for "London".	
		vaporizes easier 🗸		

Option D — Medicinal chemistry

Question		on	Answers	Notes	Total
15.			<i>LD</i> ₅₀ : amount/dose that kills 50% of the population \checkmark <i>TD</i> ₅₀ : amount/dose that negatively affects/produces toxic effects in 50% of the population \checkmark	Award [1 max] for "LD ₅₀ used in animal trials AND TD ₅₀ used in human studies".	2

16.	а	i	«irreversibly» binds/bonds to enzyme/transpeptidase	
			OR	
			inhibits enzyme/transpeptidase «in bacteria» that produces cell walls	
			OR	
			prevents cross-linking of bacterial cell <u>walls</u> \checkmark	2
			cells absorb water AND burst	
			OR	
			cells cannot reproduce 🗸	
16.	а	ii	modify side chain √	1

Q	Question	Answers	Notes	Total
16.	b	condensation		
		OR		
		esterification		1
		OR		
		nucleophilic substitution/nucleophilic displacement/S $_{\rm N}2$ \checkmark	Do not accept just "substitution/displacement".	
16.	с	water causes hydrolysis	Accept "aspirin will convert into	
		OR	salicylic/ethanoic acid".	
		aspirin reacts with water \checkmark	Do not accept "aspirin dissolves in water" OR "aspirin absorbs water/is hygroscopic".	2
		heat increases the rate of hydrolysis <i>OR</i>		
		heat increases the rate of the reaction with water \checkmark		

Question		Answers	Notes	Total
17.		morphine has hydroxyl/OH groups/is more polar <i>AND</i> diamorphine has ester/ethanoate/acetate groups/is less polar/is lipid soluble ✓ crossing blood brain barrier is easier for non-polar/less polar compounds/for lipid soluble compounds ✓	Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide". Accept "fats" for "lipid".	2

18.	a	2HCl (aq) + CaCO ₃ (s) → H ₂ O (l) + CO ₂ (g) + CaCl ₂ (aq) \checkmark	Accept ionic equation: $2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow CO_{2}(g) + H_{2}O(I)$	1
18.	b	« 0.750×2/100.09 =» 0.0150 «mol HCI» ✓		1
18.	с	inhibits the secretion of stomach acid/H+ \checkmark	Do not accept "hydrogen/H/H ₂ " for "H+".	
		«active metabolites» bind «irreversibly» to «receptors of the» proton pump \checkmark	Accept "PPI/proton pump inhibitor" for M2.	2
			Accept "H+/K+ ATPase" for "proton pump".	

Question		Answers	Notes	Total
19.	а	Any two of: hydroxyl ✓	Accept "alcohol/hydroxy" for "hydroxyl", "carboxylic acid" for "carboxyl" and "amide/carboxamide" for "amido".	
		carboxyl/carbonyl ✓ ether ✓	Accept "amino/amine" OR "imine/imino" but these are not correct as they are part of the guanidino group.	2
		amido/carbonyl √	Accept "alkenyl/alkene/carbon to carbon double bond" but not "C=C" OR "carbon double bond".	2
			Accept "carbonyl" only once.	
			Accept "heterocyclic ring" for "ether".	
19. k	b	<i>Any two of:</i> bacteria perform living functions «on their own» <i>AND</i> viruses do not «without host cell» ✓	Accept examples of living functions- excretion, reproduction etc for M1.	
		bacteria have cell walls <i>AND</i> viruses do not <i>OR</i> bacteria do not have a capsid <i>AND</i> viruses do√	Accept "bacteria have flagella/cytoplasm/ribosome AND virus can have head/protein tail/double stranded RNA/single stranded DNA". Accept other specific structural differences for M2.	2
		bacteria larger than viruses \checkmark bacteria reproduce by fission/budding AND viruses reproduce within a living host cell \checkmark	Accept "asexual reproduction for bacteria" for M4.	

Question	Answers	Notes	Total
20.	Hazardous solvent: Any one of:	Accept correct names (either IUPAC or generic) or formulas.	
	methanal/formaldehyde 🗸	Do not accept inorganic acids such as HCI , H_2SO_4 , etc.	
	methanol 🗸		
	chlorinated solvent/carbon tetrachloride/methylene chloride/dichloromethane \checkmark	Accept any specific chlorinated solvent.	
	diethyl ether/ethoxyethane 🗸		
	benzene	Accept other hazardous solvents.	
	OR		
	methyl benzene/toluene		
	OR		
	«1,2/1,3/1,4» dimethylbenzene/«ortho/o-/meta/m-/para/p-» xylene ✓		
	Green solvent:	Do not account any achieven ac	2
		Do not accept any solvent given as both hazardous and green.	
	water 🗸	Ŭ	
	«supercritical/liquid» carbon dioxide/supercritical fluids ✓	Award [2] for combination "Hazardous	
	ethanol «only if replacing a hazardous solvent» ✓	solvent: dimethylformamide/DMF/N,N-	
	propan-2-ol/2-propanol/isopropanol «only if replacing a hazardous solvent» ✓	dimethylmethanamide" AND "Green solvent: methanol «only if replacing a	
	propanone/acetone «only if replacing a hazardous solvent» ✓	hazardous solvent»".	
	ethyl ethanoate/ethyl acetate «only if replacing a hazardous solvent» 🗸		
	organic carbonates/dimethyl carbonate/diethyl carbonate/ethylene carbonate/propylene carbonate ✓		
	ionic liquids 🗸		
	fluorous solvents 🗸	Accept other green solvents but not "solvents from biomass/food waste".	